园林黄金分割比例?
园林设计中的黄金分割比例,是指将整体空间按照 1:1.618 的比例进行分割,即将整体空间分为两个部分,较大部分与较小部分之比等于整体部分与较大部分之比。这个比例被认为是最具美感的比例,因此被广泛应用在园林设计中。
然而,值得注意的是,黄金分割比例并非一成不变的规则,而是一个灵活的参考。在实际的园林设计中,设计师可能会根据具体的场地条件、功能需求、视觉需求等因素,进行比例的调整和创新。有时候,打破黄金分割比例,反而能够创造出独特的景观效果。
黄金长宽比例多少最好?
黄金比例是:(√5-1)≈0.618
黄金长方形的特点是:长 / 宽=宽 / (长-宽)。
这个数值的作用不仅仅存在于诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。
因为它在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引起人们的美感,在实际生活中的应用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割,舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧,=。
以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。就连植物界也有采用黄金分割的地方,如果从一棵嫩枝的顶端向下看,就会看到叶子是按照黄金分割的规律排列着的。
在很多科学实验中,选取方案常用一种0.618法,即优选法,它可以使我们合理地安排较少的试验次数找到合理的配方和合适的工艺条件。正因为它在建筑、文艺、工农业生产和科学实验中有着广泛而重要的应用,所以人们才称它为"黄
金分割"。
黄金比例长和宽是多少?
你好,我是【一鹿省123】,很高兴为你解答。黄金比例 黄金比例是一个定义为 (1+√5)/2 的无理数。 所被运用到的层面相当的广阔:数学、物理、建筑、美术甚至是音乐。 黄金比例的独特性质首先被应用在分割一条直线上。如果有一条直线的总长度为黄金比例的 分母加分子的单位长,若我们把他分割为两半,长的为分子单位长度,短的为母子单位长度 则长线长度与短线长度的比值即为黄金比例。 黄金分割 黄金分割也叫“黄金律”、“中外比”、“中末比”等。就是把一条已知线段分成两部分,使其中一部分是另一部分与全部的比例中项,这样的分割称为“黄金分割”。从古希腊到19世纪,人们都认为这种分割法在艺术造型中具有美学价值,故称之为“黄金分割”。 古希腊的毕达格拉斯学派对此已有研究。到中世纪,意大利数学家巴巧利在1509年出版《神圣比例》一书中也论述了中外比,德国刻卜勒称之为“神圣分割”,是分割蒙上了神秘色彩。 数学家法布兰斯在13世纪写了一本书,关于一些奇异数字的组合。这些奇异数字的组合是1、1、2、3、5、8、13、21、34、55、89、144、233┅┅ 任何一个数字都是前面两数字的总和 2=1+1、3=2+1、5=3+2、8=5+3┅┅,如此类推。有人说这些数字是他从研究金字塔所得出。金字塔和上列奇异数字息息相关。金字塔的几何形状有五个面,八个边,总数为十三个层面。由任何一边看入去,都可以看到三个层面。金字塔的长度为5813寸(5-8-13),而高底和底面百分比率是0.618,那即是上述神秘数字的任何两个连续的比率,譬如55/89=0.618,89/144=0.618,144/233=0.618。 另外,一个金字塔五角塔的任何一边长度都等于这个五角型对角线(Diagonal)的0.618。还有,底部四个边的总数是36524.22寸,这个数字等于光年的一百倍!更多专业的科普知识,欢迎关注我。如果喜欢我的回答,也请给我赞或转发,你们的鼓励,是支持我写下去的动力,谢谢大家。
使用了黄金分割的名画和雕塑有哪些?
黄金分割是一种比例和美学原则,被广泛应用于艺术创作中。一些使用了黄金分割的名画包括达·芬奇的《蒙娜丽莎》,梵高的《星夜》,毕加索的《亲吻》,以及米开朗基罗的《大卫像》等。
在雕塑领域,著名的作品如米开朗基罗的《大卫像》和《圣母升天像》,以及罗丹的《思想者》等也采用了黄金分割的比例。
这些作品通过运用黄金分割的比例关系,创造出了视觉上的和谐与美感,使观者产生更加深远的艺术体验。
什么是建筑上的黄金分割?
,世界上最有名的建筑物中几乎都包含“黄金分割比”。无论是古埃及的金字塔、古希腊的帕特农神殿、古埃及胡佛金字塔、印度泰姬陵、中国故宫、法国巴黎圣母院这些著名的古代建筑,还是遍布全球的众多优秀近现代建筑, 尽管其风格各异,但在构图布局设计方面, 都有意无意地运用了黄金分割的法则, 给人以整体上的和谐与悦目之美。
例如,法国巴黎圣母院的正面高度和宽度的比例是8∶5,它的每一扇窗户长宽比例也是如此。
希腊人建筑上所用的柱子,和符合“黄金分割律”的人身一样,有着一种节奏性的和谐,柱头和柱身的比例也是一比七。“黄金分割律”在线条、面积、体积上的体现则比较明显,古希腊人运用的也最多。他们的“黄金分割点”十分有名。面积上以长方形为最美,且长方形的边长和高的比例是七比一。在立体建筑物方面,如台阶、窗门,以及整个建筑的高低比例都符合“黄金分割律”,即七比一。古希腊神殿的柱子有所谓“科林斯柱式”(Corinthian),柱头和柱身比例是一比七,这些高耸的柱子和神像的高度之间的比率也是七十比十。柱身中段略肥,两端瘦削,这也取材于人体体态上的美趣。
在现代建筑中,许多著名的大建筑师都在他们的设计中运用“黄金分割比”,如米斯·凡·德洛(Ludwig Mies Van der Rohe,1886-1969)的别墅,勒·柯布西耶(Le Corbusier,1887-1965)朗香教堂(La chapella de Ronchamp)等。而在一些摩天建筑中使用“黄金分割点”进行处理,能使平直单调的塔身变得丰富多彩;在这类高层建筑物的黄金分割处布置腰线或装饰物,则可使整个楼群显得雄伟雅致。举世闻名的法国巴黎埃菲尔铁塔、当今世界最高建筑之一的加拿大多伦多电视塔(553.33米),都是根据黄金分割的原则来建造的。上海的东方明珠广播电视塔,塔身高达468米。为了美化塔身,设计师巧妙地在上面装置了晶莹耀眼的上球体、下球体和太空舱,既可供游人登高俯瞰地面景色,又使笔直的塔身有了曲线变化。更妙的是,上球体所选的位置在塔身总高度5∶8的地方,即从上球体到塔顶的距离,同上球体到地面的距离大约是5∶8这一符合黄金分割之比的安排,使塔体挺拔秀美,具有审美效果。
中外历代雕塑更能说明问题。与前面提到的《米罗的维纳斯》一样,古希腊雕塑大多把人体比例规范被确定为7个头长,到后期又确定为8个头长。同时,几何学中的黄金分割又被认为是美的比例运用到美术创作中。如希腊雕塑的典范作品《持矛者》塑造了一个体格强壮、动作从容的青年战士的形象,从这个形象上体现了作者对“黄金分割”这一最和谐的人体比例关系的探索和应用。
中国佛教造像对规格尺寸和比例也十分讲究,因为十方诸佛均具有三十二相,八十种随形好,经过无量劫修菩萨行,终成无上正等正觉,故具有凡夫所不能有的殊妙庄严,上至肉髻、螺发,下至足底法轮纹样,佛身的每一处都有一定的尺寸比例,如浙江天台山的佛教造像就是一例:诸佛佛像的全身总长度(自肉髻顶端至脚踵根)共可分成120等分,由肉髻顶端至腰部为48等分,由腰部至足跟底为72等分。以全身总长度和腰以下部分相比,为1:0.6,这个比例与“黄金分割率”极为相近,说明诸佛的体态符合世界公认的最完美的比例。
就像在建筑与雕塑中一样,神奇的“黄金分割比”自古至今也出现在许多伟大画家的著名作品中,如米开朗基罗的《圣家庭》(Holy Family)就是典型的例子,它的人物构图布置中包含着一个“黄金五角星”。拉斐尔的《刑罚》(Crucifixion)是另一著名例子,其人物布局以“黄金三角形”和“黄金五角星”展开。这方面的例子还有伦伯朗的《自画像》、透纳的《日出中的诺城堡》(Norham Castle at Sunrise)、修拉的《阅兵》(La Parade)、《浴者》(Bathers)。现代绘画中超现实主义画家达利(Salvador Dali,1904-1989)的《最后的圣餐》(The Sacrament of the Last Supper)最能说明问题,整幅画面置于一个“黄金矩形”之中,而人物的布置也包含着黄金比例,餐桌的上方是一个巨大的十二面体的一部分,这个多面体包含12个符合黄金比例的五边形。
除了造型外,绘画中的混色原理也是通过比例而获得美的一种绝妙原理。两种原色调合后会产生出间色,如红与黄调和出橙色, 而这橙则根据红、黄二色所占的不同比例, 可呈现出不同的色相来。为调配出一种间色所使用的两种原色当然不是等量的, 而人们习惯采用的调配当量往往是:
黄3—红5—青8,即:黄3+ 红5= 橙8,或者黄3+ 青8= 绿11,青5+ 红8= 紫13。这个调配量其实正符合斐波那契数列, 亦即符合黄金分割定理, 因此它所调出来的颜色就比较合适、自然, 看起来给人一种美感。至于两种间色的混合, 三种原色的混合, 间色与黑色的混合, 原色与黑色的混合, 原色与其补色的混合, 这一切所产生的复色, 尽管其中的比例要更为复杂, 但只要找出其各自的符合黄金分割的比例来, 就不难达到令人满意的程度。
黄金分割在优美的音乐和诗歌中同样可以找到。据说,公元前6世纪,古希腊数学家、哲学家毕达哥拉斯(Pythagoras,公元前580-500年)有一天路过一个铁匠铺,被里面清脆悦耳的打铁声吸引住了,驻足细听,凭直觉认定这声音有“秘密”。他走进铺里,仔细测量了铁砧和铁锤的大小,发现它们之间的比例近乎于1∶0.618,回家后,他拿来一根木棒,让他的学生在这根木棒上刻下一个记号,其位置既要使木棒的两端距离不相等,又要使人看上去觉得满意。经多次实验得到一个非常一致的结果,即用C点分割木棒AB,整段AB与长段CB之比,等于长段CB与短段CA之比,毕达哥拉斯接着又发现,把较短的一段放在较长的一段上面,也产生同样的比例。这个故事说明,“黄金分割”最早的发明似乎就与声音有关。后来音乐家们则是有意识地利用这种比例来“美化”其作品。典型的例子有巴赫的《神游》D小调中7对间奏和沃兹涅先斯基的诗《戈雅》中的叠句。
除了在艺术中外,“黄金分割比”在日常生活中也有广泛的应用。例如,根据广泛调查,所有让人感到赏心悦目的矩形,包括电视屏幕、写字台面、书籍、门窗等,其短边与长边之比大多为0.618。甚至连火柴盒、国旗的长宽比例,都恪守0.618比值。在音乐会上,报幕员在舞台上的最佳位置,是舞台宽度的0.618之处;二胡要获得最佳音色,其“千斤”则须放在琴弦长度的0.618处。最有趣的是,在消费领域中也可妙用0.618这个“黄金数”,获得“物美价廉”的效果。据专家介绍,在同一商品有多个品种、多种价值情况下,将高档价格减去低档价格再乘以0.618,即为挑选商品的首选价格。对它的各种神奇的作用和魔力,数学上至今还没有明确的解释,只是发现它屡屡在实际中发挥我们意想不到的作用。甚至在买卖股票的操作中也能以黄金分割线作为指导(股价极容易在由0.382,0.618,1.382,1.618这四个数产生的黄金分割线处产生支撑和压力,黄金分割线与黄金分割数是不同的概念,却有着紧密的联系)。内含“黄金分割比”的五角星形状也非常耐人寻味,世界上有将近40个国家(如中国、美国、朝鲜、土耳其、古巴等等)的国旗上上的“星”都是五角形的星。
黄金分割规律还为直接最优化方法的建立提供了依据。优选法是一种求最优化问题的方法,即怎样才能使产量最高、质量最好、消耗最少。数学上最优化问题的解决方法大致分为两类:间接最优化方法和直接最优化方法。间接最优化方法是把研究对象用数学方程表示出来,再用数学方法求最优解。但在许多情况下,对象本身处理不清楚,间接最优化方法就无法使用,于是人们就通过大量试验来寻找最优解。如何安排试验,较快较省地求得最优解,这就是直接最优化方法。如果将实验点定在区间的0.618左右,那么实验的次数将大大减少。实验统计表明,对于一个因素问题,用“0.618法”做16次实验,就可以取得“对分法”做2500次试验所达的效果。1953年,美国的基弗提出“0.618法”获得大量应用,特别在工程设计方面应用最多,成效最佳。
在家具与室内装饰领域,意大利汤玛莎拉家具成功地将“黄金分割”运用到制作当中,达到了一种整体的和谐之美。在汤玛莎拉展厅内您可以看到地柜的长高比,地柜上小相门的长宽比都是黄金分割,对开门的下方设计有一对抽屉,抽屉的长度与柜门的高度以及整个衣柜的宽度与高度之比,也都符合黄金分割定律,这种大的黄金分割套小的黄金分割,使得整体一件家具处处都显得匀称和谐,优美雅致。由带有黄金分割设计的单家具,组合而成的成套家具,其整体的协调性与观赏性,更可以达到和谐的统一。